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RITZ METHOD FOR TRANSIENT RESPONSE
IN SYSTEMS HAVING UNSYMMETRIC STIFFNESS

Thomas G. Butler
BUTLER ANALYSES

If the choice of generalized coordinates for determining
the transient response of a non-symmetric structure were not
eigenvectors but were modes of deformations due to operating
loads, there would be certain advantages. Among these would be:
1. the economy of requiring only a small number of modes, 2. the
avoidance of having either to cull out certain non-participating
modes or to retain the non-participating modes at the expense of
having to operate with larger order matrices, and 3. the con-
fidence of getting well converged solutions. Using load response
modes as generalized coordinates is properly classified as the
Ritz Method.

The interest in the case of non-symmetric stiffness
derives from structures with active control systems. The assym-
metry comes from the sensor being situated at a different 1loca-
tion than the actuator. Loads that would be typical of those
used in the design of control systems are: externally applied
forces and pressures, vernier jets whose firing is commanded by
the control system, and constraints trom appendages assigned to
attach points. Such a solution method is developed here as a
DMAP ALTER packet to the Statics Rigid Format in NASTRAN. The
Inertia Relief Rigid Format would appear to be a more natural
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host for such an ALTER packet, because it carries out full proc-
essing of mass. Its prohibition against boundary constraints
disqualifies it, hence Statics with modifications to process mass
is used as host,

THEORETICAL APPROACH

The theory will be organized in S parts. It will de-
scribe the mathematical decisions on using the original stiffness
matrices in the development of fundamentals first. It will
describe the generation of harmonics from each fundamental,
second. Then it will develop the adjoint vectors third. Having
a full complement of primary and adjoint generalized vectors,
the next step is to orthogonalize them and finally to integrate
them into an actual solution by constructing the generalized mass
and generalized stiffness and reconciling the form of the gener-
alized damping.

The methods presented herein are an outgrowth of a new
non-collocated sensor actuator analysis method under development
by H. P. Frisch at the NASA/GSFC, Code 712.1 The motivation for
the NASTRAN/DMAP implementation presented herein is to provide a
working capability which can be used for both current practical

applications and for the evaluation of the new analysis method
prior to its 1inclusion into the general purpose multi-flexible

body data preparation program FEMDA.

1. Frish, H.P. "IAC Program FEMDA, Theory and User’'s Guide,
Interface from Structural Analysis Output Data to Input Data for
Multi Flexible Body Dynamics Analysis," NASA Tech Brief Draft,
June 13, 1988. (Call author for status info 301-286-8730)
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FUNDAMENTAL MODES

A structure must be defined according to its elastic
distribution, its damping distribution, its mass distribution,
its boundary conditions and its complement of those loading
conditions which are active during its operation under a control
system. Each such loading that can be applied independently of
some of the other loadings should be treated as a distinct defor-
mation-producing condition; i.e. as one producing a unique static
response shape. Within the theory of 1linear elasticity the
magnitudes of static response to a static loading varies directly
as the magnitude of the loading, so a simple unit magnitude of
load is all that is necessary to establish the shape of an in-
dividual mode 1into which the structure deforms. A sketch of a
cantilevered beam with an end load illustrates the point. The
loads are graduated from 1 unit, to 2 units, to 3 units.
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The ratic of deformation to 1load stays constant at
L3/(3EI) as the load varies. The same holds true at positions
other than the tip deflections. For instance, the deflection at

an interior point, such as L/s where 1 ( s < o, is
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of deformation to load at an interior point stays constant as
load varies. The notion of shape that is independent of ampli-

tude can be easily depicted by a sketch of a violin string being
played in its fundamental mode.

All three show the string sounding the same pitch (frequency) but
at different loudnesses (amplitude). All 3 deformations are

considered to have the same shape.

Therefore, in order to get started, a controlled struc-
ture must be exercised with a unit load for each loading condi-
tion, which can vary in magnitude independently of other 1loads.
This will produce, what will be called, the set of fundamental
modes for the complement of loading conditions. It was assumed
at the start.of this derivation that the set of loads produced a
set of unigue static modes. This assumption needs to be tested
agains#é a criterion for uniqueness. The criterion that is ger-
main here is linear independence. The modes need to be put on an
equal footing for such a test by normalizing them uniformly.
There i1s a choice of methods for normalizing at this point.

Because this is a dynamics problem, one would be inclined toward

3

mas ormalization, but for now a simple Euclidean length will

urfice to put the modes on an equal footing to establish linear

w
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independence. Later, when the modes are orthogonalized, they
will be normalized to mass. Normalizing to maximum or to the
amplitude of a common position will be excluded, because of the
bias that would be introduced in the linear independence check.

Initially static modes are to be obtained by solving n
loadings.

(1) koo [{urf vt oo Aot = [{Br} B2} {Balle
===) [KLL][ULj] - [PLJ]‘

Each of the {uj} of [UZ will be individually normalized by its
Buclidean length. Compute the individual normalizing constants

according to

(2) [{“j}T{“j}] = Ny

Each term of {uj} will now be divided by the square root of
the normalizing constant nj. Name this normalized fundamental

{o3}-

, . 1
(3) PHI sub j, {¢j}, i.e. Jﬁf{uj}
]

In order to use these static deformations as generalized
coordinates, they should be linearly independent. Now we are
faced with the decision as to what criterion of linear independ-
ence to use and what tolerance to allow. The classical defini-

tion of linear independence 1s that the Gramian > 0. The
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Gramian® is a determinant of the matrix of the dot products of
each coordinate into every other coordinate. Translated to the
context in which we want to consider it, assume that the group of

vectors Ql— - - Qn is a set to be tested, then the Gramian for
them 1is

T T T T

0191 €197 965 910,

T T T T
(4) GOy bypnnnn. o) = |9281 9282 €285..... 050,

T T T T

¢n¢l OnOZ on°3"""¢n°n

) = 0, the set of ¢n are a dependent set, but if it
is > 0 the set of ¢, are linearly independent. In a finite
number system, such as that under which a digital computer oper-
ates, the establishment of a true zero is difficult, 1if not
impossible. Consequently the decision as to what criterion to
use rests on the practical consideration of how much impurity to
allow 1in the set that we want to use as the expansion tfunctions.
If the Gramian is just slightly greater than =zero, it 1implies
that yes a functional relationship can be set up for one in the
set with respect to the others, because imperfections creep in to
contaminate the zero computation. Now if all ¢’'s were normalized
to unity and constituted a truly linearly independent set, then
the value of the Gramian would be unity.

G(unity normalized ¢) = 1.

2. TENSOR ANALYSIS, by I. $. Sokolnikoff; pp 6; John Wiley, 1951
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Any departure from 1 in the Gramian of this unity normalized set
means that some imperfection is creeping in and the further the
descent from 1 towards zero implies more and more imperfections
away from true linear independence. So What! Our goal 1is to
have a good set of vectors so that when we expand our solution in
them, we will get good accuracy and get good convergence. If we
have a set of linearly independent vectors but too few of them to
span the range of actions in which our structure will operate, we
will fail to converge close enough to a correct solution. If we
admit too many vectors that are almost independent, but do have
some 1imperfections, the answers will contain biased emphases and
will definitely contribute amplitudes that are too great in some
modes. In further consideration of the practical factors that
will govern our decision, we ask, "What will it cost to find out
if there 1is linear independence?" 1In the case of the Gramian,
the computations involve the creation of a full matrix of vector
dot products that must then be decomposed and finally the product
of all diagonal terms of the decomposed matrix forms the Gramian
determinant. Decompositions are expensive, so a method other
than using the Gramian would be worth while to investigate.

Another approach 1is to 1look at the ingredients of the
Gramian i.e. the individual matrix dot products. By definition
the dot product of 2 vectors A and B is

A . B-= |A|x|B| cos 6, where O is the generalized angle
between the 2 vectors. This can be extended to vectors in N-di-
mensicnal space. Set up a criterion based upon the size of the
angle that a trial vector ¢ makes with each of those ¢n that have
already been judged linearly independent.
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T
(5) C cos™ ! [‘°n‘] [|¢k‘} 2 1, where T is some
¢n ¢k

threshhold value. Ideally T would be 7/2 for an orthogonal set
with perfect 1linear independence. The poorest possible value
would be that for which ¢n and ¢k are coincident, 1i.e. zero
angle. This criterion can be rephrased by saying that it tests

how well cos © compares with cos w/2
(6) (cos (<] ] - [cos ———] < K.
k.n ‘

The desire is to hold the angle between test vectors to be some-
where between a threshhold and n/2. If the threshhold angle were
/3, kK = cos /3 = .5, then the test would require the cosine of
the angle between test vectors to be less than 0.5 :

‘ [‘::‘]T[|:t‘J ‘ ¢ 0.5 =« for all 1<( n < k.

Once k has Dbeen decided upon, the test is carried out against

every ¢n for n ¢ K.

In the case of the cosine test, the matrix of dot pro-
ducts would have to be formed as in the case of the Gramian, but
no decomposition need be done. The absolute value of each term

is compared to k.
The Uramian test has the advantage of making its decision

by comparing only one number against a threshold while the cosine

test involves comparison of every ratio in a column against a
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threshhold. The term by term processing involves only simple
operations; the net result is that the cosine test is much less

expensive than the Gramian test. The cosine test has been chosen
for this method.

HARMONICS

Modes, determined solely on the basis of static loads,
are questionable to apply without supplement to the solution of
dynamics, because they are devoid of inertia effects. Supplemen-
tal modal vectors can be generated by finding the deformation due
to forces derived from accelerating masses distributed through
the structure by an amplitude equal to the vector of elastic
deformation. Call the deformation from inertia effects, ac-
celerated by amplitudes derived from the fundamental mode, the
first harmonic. A second harmonic can be generated by the scheme
used to generate the first harmonic, except that the the inertias
are now accelerated through amplitudes derived from the first
harmonic. Similarly, a third harmonic can be generated from the
acceleration of mass through the amplitudes of the second har-

monic, etc. Eventually the upper harmonics will tend towards
congruence, so there will be an nth harmonic beyond which no

distinct modes will be added. The measure to be used for finding
the useful limit will be linear independence.

The set of linearly independent modes, <c¢onsisting of a

group of fundamentals plus groups of harmonics associated with
each fundamental, when normalized to the Euclidean length, then

orthogonalized, will be used as modes of generalized coordinates
in expanding the behavior of a structure under the management of
a <control system. The mathematics of these inertia modes fol-
lows. The mass of the structure [MLL] will be accelerated by an
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amplitude distributed spatially according to the shape of the
normalized - but not orthogonalized - fundamental mode {Qf} to
create an inertia forcing for the first harmonic {Fhl}; i.e.

(7) {Fhl} - [MLL]{ég} , where
(8) {&;} = {¢f gzz cos ut} = {wf(-uzcos wt)} .

The shape of the deformation through which the mass will be
acselerated is established by Qf. The effect of the term
(wcos wt) is to merely amplify the shape as a function of time.
Our interest, at this stage of the derivation, is only in the
shape and not the total dynamic response, therefore the forcing
can be treated as a statics problem with the spatial distribution
of the set of accelerations, limited to any instant of time,
therefore

|¢f| =~ |¢fl and the resulting static force 1is

97 {Fra} = [oel{oe}-

Apply this force to the structure and solve for the response.

a0 [’ e} = P} = [Meo){ee) -

from which the response can be explicitly isolated:

() {uy} [KLL]'l[MLL]{¢f}.

The {uhl} so obtained will be normalized by the Euclidean length
and will Dbe tested for linear independence , which if accepted,
will be named {¢hl} and will augment the complement of Ritz
modes. This first harmonic will have a shape of deformation
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sufficiently unique to make it worth while to consider it as the
basis for accelerating the mass through its spatial behavior to
obtain a second harmonic, similar to the way that the fundamental
was used in the generation of the first harmonic. Mathematically
the method of forming the second harmonic follows the pattern
already established for the first harmonic. Form the forcing

a2 {Fy,} - [MLL]{$£1}.

PN , 2
Let {¢hl} = {¢hl} 9—-.—a(cos wt) and limit the value to its
. / N\ d t
static amplitude |¢hll = l ¢hl| , then solve for the static
response {uhq} from

an [k (o) = {Fua) = [Mee]{ons)

Extract {uhZ} explicitly.

as o} - [KLL]-I[MLL]{¢h1}

The {uhZ} so obtained will be normalized by its Euclidean
length and will be tested for linear independence, which 1if ac-
cepted, will be named {¢h2} and will augment the complement of
Ritz modes. A question arises as to the extent to which a can-
didate harmonic should be tested for linear independence. Should
it be tested against every other vector established up to this
point, or should the candidate harmonic be tested for linear
independence only against its parent fundamental and the
harmonics that are spawned from that fundamental alone? From an

algorithmic standpoint the latter route 1is favored, because all
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quantities stay within an inner 1loop. The merit of this deci-
sion can be tested and be replaced if need be. It is known that
as the recursion steps are carried out for higher harmonics, the
deformations will tend toward congruence so there is a definite
need for testing each new candidate harmonic against its parent
and siblings. If there is no physical risk for so 1limiting the
linear 1independence check to the family associated with just one
fundamental, it will be opted for here.

A certain pattern starts to appear from the development
of these two harmonics. The matrix product [KLL]-l[MLL] is used
repeatedly. Consequently, it can be generated once and saved for

recall in the generation of any level of harmonics of any fun-
damental. Name this matrix product

-1
R .
(15) £SOLi] = [KLL] [MLL] , where 1 can take on the BCD

character for the primary or the adjoint mode, and * can take on
either blank for primary or T (for transpose) for the adjoint.
Discussion of adjoint mode generation will be taken up subse-
quently.

Capitalizing on the pattern that has been revealed, all

rirst harmonics tor all tfundamentals can be generated in a series
of matrix operation as follows, as adapted for the primaries:
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(154) [{ul}'{uz}'{uB}’....'{ui}’...’{un}]Shi
[KLL]: [ec] [{oa} {02} Aos), - Aoa}, - ,{%}]sf

This can be compressed into
..l_
ase) [ug] = ko] [Moc] [e |
H1 3 LL s LL F 3

Equations (15,15A,15B) represent all possible inertia response
raw data for forming first harmonic modes of primary fundamen-
tals.

Normalization of these responses can also be performed on
all vectors treated as a matrix. The Euclidean 1length can be
extracted from the multiplication of [UHI] by itself.

(15C) [UHl]T[UHl] - [UHlSQ].

Strip off the diagonal, take the inverse of each, fol-
lowed by its square root, to form a diagonal matrix of scale

factors mode by mode.

(15D) [ UHlSQ\] zz===z) [SCALHI].

Apply this matrix of scale factors to the first harmonic respons-
es, of fundamental inertia loadings, as a post multiplication

operation to get a set of candidate normalized harmonic modes.

(1SE) [UHIJ[SCALHl] - [¢g?].
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This matrix of candidate first harmonics needs to be tested for
linear independence. Testing will proceed in two parts. All
first harmonics will be tested against all other first harmonics,
then all first harmonics will be tested against all fundamental
modes. Start with the harmonics by themselves. The cosine test
involves taking the dot product of every mode against every other
mode. This is done in a single matrix operation.

ase) [o%8] [oA] - [pomyy].

Examining the [DOTH1] matrix closely, one can recognize that the
first row represents the dot product of the harmonic (first in
sequence) against each of those in the set of harmonics. The
second row represents the dot product of the harmonic (second in
sequence) against each of the set of harmonics. Et cetera.
Consequently, the next step is to strip off one row to examine
how well this candidate harmonic holds up in the cosine test
versus other first harmonics. Next another row is stripped off
and this candidate is tested and so on until all candidates have
been examined. If the vectors had not been initially normalized
to length, it would have been necessary to do so at this point to
form the cosines. As a consequence, the matrix DOTHl consists of
all cosine terms. Going back now to the first row, some detail

will reveal a pattern tor systematizing all of the candidates.

Select one term at a time starting with the 2nd and take
its absolute value then compare that value with k. Shift the
index to the 3rd and do the same. Continue until either a value
greater than k 1s encountered or until the the end of the row is
reached. If any term tests greater than k, catalog the row

number and proceed to the next row. All successful candidates
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will be eligible to be tested against the matrix of fundamental
modes. The harmonic vs. fundamental test will patterned after
the harmonic vs. harmonic test. All successful candidate
harmonics will be held in reserve to form the basis of 2nd
harmonics before they will be merged with, but in sequence after,
the fundamental modes.

The number of successful first harmonic modes may be
fewer than those in the set of fundamentals. This does not
matter, Dbecause the method of computing harmonics is independent
of the size of the order of the vectors from which they are
derived. The generation of second harmonic modes and higher will
proceed along the pattern just outlined for first harmonic modes,
except that after the responses to inertia loads have been com-
puted, the successful modes from which they were derived., will be
merged into the matrix of previous Ritz modes. Now the iLﬁ
set of harmonics will be tested for linear independence vs. not
only themselves but against all other Ritz vectors including
fundamentals and all previous order successful harmonics wup

through the (i—l)EQ.

The generation of higher harmonics will be subject to a
choice of two limitations. The analyst may want to limit thé
maximum number of harmonics to be admitted for any particular
investigation because of, say, a study in a low frequency domain.
He can invoke such control by giving the value of the maximum

number of harmonics to the parameter MODSPEC. Declining to
assign a value to MODSPEC will cause the number of harmonics to
be limited by those that pass the linear independence check.
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ADJOINT MODES

For the non-symmetric problem, adjoint vectors are re-
quired to obtain the reduced order coefficient matrices. There
are no set rules for introducing the adjoint basis. In the
spirit of Lanczos method, a trial method 1is introduced and
refined. For 1lack of any better trial scheme, the starting
matrices of the adjoint system that will be wused here will
consist of the transpose of the original [KLL] matrix; i.e.

[‘EL]’ (which will also be non-symmetric), and the original 1load
vectors {EL}.

The static solution of this adjoint system under the n

original loads yields a set of responses {vj}:

(16 [KgL] [{Vl}{vz}{"n” ) [{Pl}’{PZ}"""{PnH
===> [KEL][VLj] ) [PLj]

Each of the {Vj} of [V] will be 1ndividually normalized by its
Euclidean length. Compute the 1ndividual normalizing constants

according to

(17) [{vj} {Vj}] = “j'

BEach term of {vj} will now be divided by the sgquare root of the
normalizing constant “j' Name this normalized fundamental

(18 PSL sub j, {wj}; i.e. v;‘{vj} = {wj}.
]
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EBach adjoint fundamental will be checked for linear independence
against all other adjoint fundamentals. If any adjoint fundamen-
tal mode fails the linear independence check, and if its primary
companion passed, both primary and adjoint will be discarded.
This 1is necessary 1in order to retain a uniform sequence when
setting up generalized mass and generalized stiffness. The
cosine test will be used to certify linear independence. Iner-
tial harmonics of adjoint fundamentals will be generated in the
same manner as those of the primary fundamentals. Once again the
linear independence of the adjoint harmonics will be checked only
against its parent and siblings, instead of the currently estab-
lished set of ALL Ritz modes.

ORTHOGONALIZATION

The solution of the differential equations is enhanced it
the generalized coordinates used to span the response space are
orthogonal. OUur set ot linearly independent vectors can be
orthogonalized. At this point we have a pair of bases vectors
{¢} and (P} that are each separately linearly independent. After
orthogonalizing they will be given the symbols {{} and {Q3} re-
spectively. Options for orthogonalization and for associated
constraint weightings were given due consideration. Before
deciding on what options to choose, it will help to review the
ultimate application.

The dynamic equation in metric coordinates is:

(19) CM1{x } + [B1{x} + CKI{x} = F(t).
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Transform the metric coordinates to the primary bases
vectors as generalized coordinates. Assume that the orthogonali-

zation of ¢ into { has already taken place. Let

(20) {x3} = LLI{g}, giving

CMICCICE 3 + CBICCICE3 + CKICLILED = F(t).

At this point the columns only of the coefficient matri-
ces M, B, and K have been transformed to generalized form. Next
the rows of the matrices must be transformed. In the symmetric
case3 this is done by wusing the transform of the symmetric
modes. However, in this the unsymmetric case, we pre-multiply by
the transpose of the adjoint bases vectors. Assume that the
orthogonalization of ¢ into & has taken place.

T

T T T

(22) CQITCMICCILE 3 + CQICBICCILEL + [QJ‘[KJ[§J£§} = LQIFt).
The desire is to decouple the equations as much as possible. To
start with, we want the generalized mass to be a unity matrix:

i.e.

(23) £oaTeMIced = [\I\].

Constraining the generalized mass to unity will affect the nor-
malization to such an extent that the generalized coordinates

will have been transformed to final form. Thus, much of the

-

2, Lynamics 3r Structures, by W. C. Hurty & M. F. Rubinstein, pp
1z, Frentice Hall, 1964
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control in obtaining diagonalized damping and diagonalized stiff-
ness will have been removed, so it appears that the ageneralized
stiffness matrix mav be coupled. Since [ I ] 15 a square matrix,.
the requirement of eqgquation (23) implies that the order of the
adioint vectors §l be the same as the order cof the primarv vectors
C.

A. Use Gram-3chmidt method for orthoagonalizina the Pri-
marv Ritz modes and apply the simple constraint of unit diagcnal-

izing with no weighting.

B. But in the case of Adioint Ritz modes the orthoaonal-
ized set will be expanded in terms of the complete set cf adioint
bases with the dual constraint of equation (2Z23) having mass

weiaghting.

Mathematicallv these statements translate into building

the normalized vectors as follows.

A, Self-Orthogunalization

To start with, the simple Gram-3chmidt method sets up a matrix of

undetermined coefficients to invclve an  increasing number of

tU

rase2s3 vecters ¢ in the content of the orthooonalized vectors (C.

Ve b = {oyf
oot = apteyr v ot
leob = aspdent = agafezf + {os)
o1 - - “
| - R I | { [ i
Voiel T e by a0y tagegf ¢ i¢1+7}
l,’: \ = l L - ) !
15n1 S 1%y T3y, i,himz} oAy qo\ - T V8T
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The self normalizing constraint is written in matrix notation as:
T \

@ eg] [eps] = (Mo

One can better appreciate the earlier topic of having to decide
on sequencing during generation of ingredients of the bases 1in
light of the character of orthogonalization. If the fundamen-
tals are sequenced together at first, then the initial orthogo-
nalized vectors will contain a minimum of higher harmonics in
their expansion. We ask, Is this good or bad? If inertia
effects dominate the dynamic behavior of a structure under
certain loads, probably sequencing harmonics 1in earlier might
help. But in this study the option was taken to group the fun-
damentals ahead of the harmonics instead of layering one fun-
damental and all of its higher harmonics on top of a second

fundamental and all of its higher harmonics et cetera.
Trace the effect of the orthogonality constraint on

achieving a solution for the undetermined coefficients. Operate
on the first two equations of the set in equation (24).

(26) {gl} - {¢l}. {92} - 311{°1} + {@2}. Impose the

single orthogonality constraint of equation (25).

Subs for QZ Multlpl]

(27) {Ql}T{QZ} ====== } { 111 1} {¢ }} ====2)

- . Tiol = ¢ . {1} {o2}
(28) fAesfany ¢ {e) ezf =0 Ayt
{erf {orfann = {eu} {ec) o
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/
.. o ) {o1} {¢2} .
Substitute from (26) a = (=) —g - The coefficient

ajq is now expressed entirely in terms of the set of known norm-

alized bases vectors {¢3. Substitute aq into the equation above

and now {Qq} is known. Turn to the third vector.

e
\

(29) {;3} = azl{wl} + azz{mz} + {¢3}. Two orthogonality

conditions are imposed between {, and the previously found Ql and

&2
.. T T \ \
ferb qes) = v {a ) {azl{wl} taeay * {¢_}} =0
Subs for
20 =Z=z====xz=====, === )
T, T L \
<1 {3t = 0 %27 {321{¢1} +ayafe )+ {¢3;} =0
T T T
1C ) {o fag; * {0t 192200 = r{St {0y)
e T, T T
{Cor {0120 * (C:} {ostasn = (={ca) {oy)

This gives two algebraic eguations in the two unknowns a-q and

G-
P
Substituting these coefricients makss {Cﬁ} kriown. Turn tz the
- e
]V.*'l"“ri FE R i

QRIGINAL PAGE IS
OF POOR QUALITY
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(32) {§i+1} = a11{¢1} * a21{¢2} oo aii{¢i} + {051} =

13
L 132i
= [{ouh o2}, Aos) {oun ] aé:* - o1, la iy
a4
1)

Assemble the i constraint conditions 1in preparation for sub-
stituting €i+l from equation (32) into them.

(33) {Ql}T{§i+1} = {QZ}T{€1+1} = ... {Qi}T{§i+1} =0,

which can be combined into

s [l e el ] feat - {8

Now substitute the expansion in terms of {¢}.

414

R O R R 0 5 N (DR TR MW | il

ii
1

Which can be compressed into

T T _
(35) LCI10ed | @ |14p=0-

But by introducing partitions into L¢1 and {al} it can be written
more intuitively as

ST y ol 1| _ o T : T, . . 1| .
(36) thi[c¢Ji§{¢}i+L]{.i} = 0. === ([g]i[¢li§[§3i{¢31+l]{.i} 0.

]

L T, JTo o R N, |
===> [C1;[¢1.(a} + CCI (o), = O, > [L1, 061 (ad;= (-1LLI 0

332




RITZ METHOD FOR TRANSIENT RESPONSE
IN SYSTEMS HAVING UNSYMMETRIC STIFFNESS

from which all of the undetermined coefficients ai,az,...,ai can

be computed and substituted into equation (32) to evaluate Qi+l'

For solutions of succeeding vectors i+2, i+3, ....n; the
square coefficient matrix [QJ$[¢Ji increases incrementally in
order up to n x n, so that results from the previous calculation
might be considered for saving. Then the increments can be
merged into the salvaged core to continue on. Details of the

strategy will be given in the CODING document.

B. Dual QOrthogonalization

The dual orthogonalization of the adjoint bases are organized
into a full matrix of undetermined coefficients for the expansion
of normalized vectors & as components of the raw adjoint bases y.

0,3 byy byy Dyge-ens by} ((¥p3

(o231 b b-< b b IR

(37) fab23l - [p2l 522 123 p2n| ] oL2;
L3 31 P32 P33 3n L3

;3 by b b o b || €y 3

This can be written in more conventional form as

b b

o pil bﬁliiiﬁni
aer [{age}, {02}, - oa)] = [{vea) Aoz}, {%ea)] biﬁ bzg-“bgg
bin bZn"'bén

Note the the bij’s in equation (38) are the transpose of the
bjl's in equation (37). Equation (38) can be condensed to
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(39? [QLn] = [wLp]lSpn]’ in which [B] is the transpose of the
1]

The mass orthogonality constraint, according to the
transformation requirements of the dynamic differential equation
(23), 1is a relationship between the normalized adjoint and the
normalized primary bases; i.e. QEiMLLQLj= Sij’ Since the M and (
are . known, their transposes can be taken immediately, so it
becomes better strategy to transpose the constraint equation in

order to obtain {§ in non-transposed form; i.e.
T

(40) [QLj] [MLL] [‘Q‘Li] = [\Sji\]'

Now substitute from the expansion equation (39) into the mass
orthogonality constraint equation (40). Confine to one index at
a time. BSet i = 1.

T T ] l for 3 =
an - fops] rool{en) - fons] [Mec) (el {Ber} =857 o cor 3 -
This will produce a solution to the first column of Bpl' Next
set 1 = 2 and substitute for ﬂthrom equation (39).

a2 o] Mel{ona) = [ons] Moo [el{Bea) =552 0 35 3 -

This will produce a solution to the second column ot 8. A pat-

T T

tern is now apparent for solving for the complete content of B in
a single operation, by recognizing the coefficient
[QLj]T[MLL][wLp] is the same in every equation; only the columns
of unknown B's and the columns of the Sji change. Combine the

N

columns into matrices; i.e.
T .
an o] [ [v00) [Bpi)

Isolate Bpi'
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ORIGINAL PAGE IS
OF POOR QUALITY

, -1
(44) [Bpi] = [\'I\J [‘;ngLLwLp]

Substitute intoc the defining equation for normalized adjioints
(39).

R [“Ln] ) [wpn][apn] ) [wLP][AI\][;EjMLLwLP]

All quantities are now derived for getting a solution of

-1

the dynamic differential eguation by using Ritz modal vectors.
One thing not taken up however, was the definition of damping so
as to give as sparse a generalized damping matrix as possible.
The other topic that still needs addressing is data recovery.
These topics will be reserved for an extension to the basics as
developed here. Details of converting this theory to DMAP coding
has been published in a report entitled "RITZ MODES FOk
UNSYMMETRIC MATRICES--DMAF CODING OF THE THEORY" by Thomas B.
Butler.

The coding was done in 3 steps. (1) Fundamental Primary
and Adicint modes were cbtained from a DMAFP ALTER to the Statics
Rigid Format. The listing of this code 1s attached as Appendix
A. { &) Harmconics for the Frimaryv and Adjoint sets were c-oded as
a pure DMAP approach. The listinag of this code 1s attached as
Arcendix E. (3 Orthogonalizaticon was coded as a pure DMAF

aprroach. The listing of this code 15 attached as Appendix C.

A simple demcnstration probklem was used to certity the
method and the coding, It was rtun twice with a different

threashhold wvalue <f HKappa ©2 exerclse a number of dirferent

335




RITZ METHOD FOR TRANSIENT RESFONZE
IN SYSTEMS HAVING UNSYMMETRIC STIFFNESS

paths. Details of the demconstration problem are given in Appen-
dix D. Generalized Mass and Generalized Stiffness that were
produced in the twc daifferent runs are given 1in Appendix E. One
run set the linear independence threshhold Kappa to 0.007. Only
the four fundamentals passed the linear independence test, so the
generalized mass and stiffness are only of order 4 x 4. Kappa
was deliberately set high to a value of 0.95 in the second run so
as ‘to admit 5 harmonics in addition to the four fundamentals.
Resulting generalized mass and stiffnesses are of order 9 x 9.

The generalized mass in both cases was practically unity.
Off diagonal terms were at least 14 orders of magnitude less than
those on the diagonal. Marked differences show up in the gener-
alized stiffneses for the two cases. When a mathematically
logical value of Kappa is used as in the .007 case, the terms on
the diagonal dominate the off-diagonal terms, implying very weak
coupling between Ritz modes. This weak coupling could very well
Jjustirfy the use diagonal matrices and so benefit from a decoupled
solution. When an 1mprobable value of Kappa 1s used as in the
0.3% case, sff-diagonal terms are large. This observation can

lead to a manageable criterion for comgpleteness of the modes.
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CONCLUSIONS

The method is workable. DMAP coding has been automated
to such an extent by using the device of bubble vectors.4 that
it is useable for analveses i1in its present form. This feasib:ility
study demonstrates that the kitz Method is so compelling as to
warrant coding its modulez in FORTKAN and organizing the result-

ing coding into a new Rigid Format.

Even though this kitz technique was developed for unsym-
metric stiffness matrices, it offers advantages £s problems with
symmetric stiffnesses. If used for the symmetric case the solu-
tion woculd be simplified toc one set of modes, because the adjoint
would be the same as the primary. Itsvadvantaqe in eitheyr type
of symmetry over a classical eigenvalue modal expansion is that
information density per Ritz mode is far richer than per eligen-
value mode; thus far fewer modes would be needed for the same
accuracy and every mode would actively participate 1in the re-
sponse. Considerable eccnomy can be realized in adapting Ritc
vectors for modal solutions. This new Ritz capability now makes

NASTRAN even more powerful than betore.

: [oRIPUEE RSN
1. DLt iel

., T. 5. and Fam:41i, F. E. "BEubble Vector in Automatic
Mayaing™, EFrc

ceedings oI the Fifteenth NASTEAN Colloguium, 1387
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APFENDIX A

DMAF CODING FOR
PRIMARY AND ADJOINT FUNDAMENTALS

$ ADVISABLE TO INCLUDE THIS NASTRAN CARD IN JOBS.

NASTRAN MAXFILES = 60, FILES = (INPT,INP1,INP2,INP3,INP4)

RITZFUND.DMP $ DMAP ALTER FOR GENERATING FUNDAMENTAL RITZ VECTORS s
ALTER 2 $ ALTERS FOR 1988 VERSION OF NASTRAN

Pl
2
A
2
2
E
A
3

FARAML CONTK/ /4APRE3SENCEXx/ / / /V,N,NOCONTK 5 CONTK IS A DMAP INPUT s
55 $ NOCONTK = -1 [F CONTK I3 MISSING 3

PRTPARM / /0/C,N,NOCONTK $DB

COND ERROR4 ,NOCONTK 3 ABORTS IF USER OMITS CONTK.

$s AFTER GP3
ALTER 26,26 3 REPLACES PARAM STATEMENT WITH ONE THAT ENABLES MASS GENERATION

PARAM / /*ADD4/NOMGG/1/0 $ ALERTS EMG TO GENERATE MGG 3
ALTER 39 s AFTER EMA OUTPUTS KGGX FOR STIFFNESS
ADD CONTK.KGGX/NSKGG/ $ THIS I3 THE NON-SYMMETRIC STIFFNESS.

ALTER 45 $ AFTER EMA OQUTPUTS MGG

PURGE MNN.,MFF,MAA/NOMGG 3

ALTER €l.61 3 DON'T PURGE QG.

PURGE KRR.KLR.QR,DM/REACT/GM/MFCF1/G0,K00,L0O0,P0O,0UUV/OMIT/PS.,
KF3,.KSS/SINGLE $

ALTER 62,62 s ADD MGG TO EQUIV

EQUIV KGG,KNN/MPCF1/MGG.MNN/MPCF1l $§

ALTER 65,69 $ REPLACE MCE2 & SCEl WITH NON-SYM OPN’S

VEC USET/GNVEC/AGA/AMA/AN*x & 1’3 ON N

PARTN KGG,GNVEC, /KMM,KNM,KMN,KNNBAR/-1 $ -1 MEANS THAT GNVEC IS USED

$%$ FOR BOTH ROW AND COL PARTNG., BUT DOES NOT MEAN THAT KGG IS SYMMETRIC

MPYAD KNM,GM,KNNBAR/KNN1/0/+1/+1 $

MPYAD GM.KMN,KNN1/KNN2/+1/+1/+1 5
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MPY3 GM,KMM,KNN2/KNN/O 3

MCE?2 USET.GM, .MGG, ., /KWASTE.MNN, , $
LABEL LBL2 §

EQUIV KNN,KFF/SINGLE/MNN,MFF/SINGLE $

COND LBL3,SINGLE s

VEC USET/NFVEC/AN*A/AFx/*%34 § 1'S ON S
PARTN KNN,NFVEC., /KFF.KSF,KFS.,KSS/-1 $
SCElL USET, ,MNN, , / , , MFF, . §

ALTER 71.71 $ ADD MFF TO EQUIV

EQUIV KFF ,KAA/OMIT/MFF,MAA/OMIT s

ALTER 73.82 $ REPLACE SMP1l,RBMG1.RBMGZ,RBMG3 WITH UNSYM OPN'S

VEC USET/FAVEC/AFA/*Ax/*0* 3

PARTN KFF,FAVEC, /KAABAR,KOA.KAQ,K00/-1 3

DECOMP KOO/KOL ,KQU/0/0/3,N,KOMIN/S,N,KODET/S,N,KOFWR/S.N,DOSING 3 UNSYM
35 DECOMF OF KCO

FB3 KOL ,KOU,KOA/G0/0/-1 3
MPYAD KAOQ,GO ,KAABAR/KAA/O0/+1/+1 3
SMP2 USET.GO ,MFF/MAA 3

LABEL LBLS 3

EQUIV KAA,KLL/REACT/MAA ,MLL/REACT 3

COND LBL6.REACT §

VEC USET/ALVEC/ *A*/ALXx/AR* 3

PARTN KAA,ALVEC, /KLL,KRL,KLR.KRR/-1
RBMG1 USET. .MAA/ , , ,MLL,MLR.MRR 3
LABEL LBL6 $§

ourPUT1, ,,,,/ /-1/4 $ SET THE DEFAULT LABEL

QUTPUT1 MLL.KLL., ./ /0 /4 $ FOR ORTHOGONALIZATION AND FINAL CHECK
DECOMP KLL/LLL.ULL/0/0/S,.N,KLMIN/S,N,KLDET/S,N,KLPWR/S,N ,.KLSING $
COND LBL7 ,REACT $§

FBS LLL,ULL.KLR/DM/0/-1 §

MPYAD KRL.DM,KRR/X/0/+1/+1 $§

DECOMP X/XL.,XU/0/0/8,N,XMIN/S,N.XDET/S.N.XPWR/S ,N,XSING 3

LY
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DECOMP KRR/KRLL,KRUU/0/0/3,N,KRMIN/S,N,KRDET/ S,N,KRPWR/S,N,KRSING 3

PARAMR //C,N,DIV/ / / /V,N,RBEPS/V,N,XDET/V,N,KRDET $

PRTPARM //0/C,N,RBEPS 3¢ RIGID BODY TRANSFORMATION CHECK

LABEL LBL7 s

$USER INPUT = CONTK, A matrix of control properties of the same order as KLL.

3 = SCVEC, A vector of a leading 1 followed bv zeroces of order equal to
$5 the number of loading subcases.

53 = SCADJ, A vector of leadinug zeroes followed by a trailing 1 of order
53 equal tou the number of loadinug subcaseos.
335 = KAPPA, A real double precision parameter for setting the tolerance of
35 the cosine linear indecendence check.
33 = MODSPEC, A parameter for setting the integer maximum of harmonics
53 to be generated.
33 = LONGONE., A Vector of ones whose length 1s areater than twice the
$3 number of subcases times MODSPEC plus one. L= 2(3C)(1 + MODSPEC)
S++++++++tt+ttrrrrttt bbb
FBS LLL,ULL,MLL/SOLP s INERTIA COEFFICIENT FOR HARMONIC RITZ P VECTORS
$$ PER EQUATION (15)

3 INTRODUCE THE SOL°'N OF THE TRANSPOSE OF KLL TO DEVELOP INVERSE VECTORS
TRNSP KLL/KLLT/ $

DECOMP KLLT/TLLL.TULL/0/0 3
FBS TLLL.TULL.MLL/30LA 35 INERTIA COEFFICIENT FOR HARMONIC RITZ A VECTORS
$s FER EQUATION (1%)

Lo o e S O e o b o b Ul

ALTER 88,92 $ REPLACE $5SG3 WITH NON SYM OPN'S

FBS LLL,ULL,PL/ULV/ 3

FBS TLLL,TULL, PL /TULV/ s$FAY THE PRICE OF DOING FBS ON INVERSE TOO
COND NOUOOV.,OMIT s

FBS3 KOL.KQU,PO/UQO0OV/ s

LABEL NOUOOQV s
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$
$$ CALCULATION OF RULV IN CONNECTION WITH IRES WILL BE IGNORED BECUZ IT WOULD
$3% BE ADVISABLE TO DO THIS CHECKING WITH SYMMETRIC MATRICES.

$ THE EPSILON SUB E CHECK WILL BE DONE IN DBL PREC BECUZ PARAMD IS NOW AVAILABLE
$

MPYAD KLL,ULV,PL/DELPL/0/-1/+1 §

MPYAD ULV,DELPL, /DELWORK/+l1/+l1 §

MPYAD PL,ULV, /ALLWORK/+l1/+1 §

SCALAR DELWORK/ /1/1/ /V.N,EPSNUM 35

SCALAR ALLWORK/ /1/1/ /V.,N.EPSDEN §

PARAMD / /*DIV%/V,N,EPSUBE/V,N,.EPSNUM/V ,N,EF3DEN $

FRTPARM //0/C.N.EPSUBE 33 RIGID BODY TRANSFORMATION CHECK

PARAM !/ /*ADD*/V,N,ADJCYC/+1/0 s VALUE OF FARAM REMAINS FOSITIVE DURING
58 FROCESSING OF FRIMARIES.

COFY LONGONE/CLONONE/ 0 $

ADD LONGONE,CLONONE/LONGNULL/(-1.0,0.0) 3

PARAML SCVEC/ /+TRAILER*/2/V,N,VECRO 3 ROW SIZE IS READ FROM 3SCVEC
PARAML ULV/ /*TRAILER*/1/V,N,2COL $ COL SIZE IS READ FROM ULV
PARAM / /*EQ4/V.N.LODNO/V.N,VECRO/V,N.2COL 3 LODNO I3 NEGATIVE IF VECRO=ZCOL

COND ADJLUF,LODNO 3 CONTINUE IF SCVEC AND ULV AGREE

JUMP ERROR4 3 ABORT [F 3CVEC AND ULV DON'T AGREE

FILE FALCCLI= SAVE/FALRRLI= 3AVE 3

LABEL ADJLUP & TOP OF LOOP PRIOR TO FORMATION OF EITHER PRIM OR ADJ FUND
COND ADJTRN,ADJCYC $ ADJCYC INITIALLY IS POS TO GIVE FRIORITY TO PRIMARY
COFY ULV/FLV/ 0 $§ FLV WILL REMAIN AN INTERNAL DATA BLOCK TO THIS FUND LOOP
EQUIV ULV.CLONFLV ¢ CLONFLV IS INTERNAL. EQUIV WILL BE BROKEN AT TOP’'O LOOF
JUMP PRIMSEG $ GO ARQUND THE AJOINT PREP

LABEL ADJTRN §

COPY TULV/FLV/ 0 ¢ FLV IS INTERNAL

EQUIV TULV,CLONFLV ¢ CLONFLV IS INTERNAL
LABEL PRIMSEG s
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MFPYAD
DIAGONAL
MPYAD
COFY
MPYAD
MATPRN
CoPY
COoPY
COPY
ADD
COorY
FPARAM
LABEL
PARAM
PARTN
PARAM
PARAM
LABEL
PARAM
SCALAR
PARAMD
PARAMD
PARTN
MERGE
COND
JUMP
LABEL
PARAM
$S
PRTFARM
PRTFARM
ADD
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CLONFLV,FLV, /FLSQ/+1 3

FL3Q/SCALF/*DIAGONAL*/C,N,-0.5 §

FLV,SCALF, /FMOD/ 0 $ CANDIDATE MODE NORMALIZED TO EUCLID LGTH.

FMOD/FCLON/ O $

FCLON,FMOD, /FDOT/+1 $ MATRIX ORDERS = ZCOL.

FDOT,,.,// $DB

SCVEC/SCVECI/ 0 $ ROW BUBBIE STARTING FROM HEAD

SCVEC/LIVECI/ 0 $ COL BUBBLE STARTING FROM HEAD

SCVEC/MODPARTN/ ¢ $ DUMMY TO BE USED FOR SWITCHING WITHIN LOOPS

LIVECI.SCVEC/FALCCLI/ /(-1.0,0.0) $ NULL BUT SAME LENGTH AS SCVEC

FALCCLI/FALRRLI/ -1 $ NULL SAME LGTH A3 SCVEC

!/ /AMPY*/V ,N,ROCNT/ 1 / 0 $ RESET ROW COUNT TO 0 BEFORE LI CHECK

LIRLUP 3 TOP OF ROW PORTICON OF LINEAR INDEPENDENCE LOOF

/ /*MPY*/V ,N,NORFAL/+1/-1 $ SET DEFAULT TO NEG TO JUMP OVER FAIL BOOK

FDOT. .3SCVECI/ ,ROCAI, ., /+7/+2 §

/ /*ADD*/V,N,ROCNT/V,N,ROCNT/ 1 $ ROW COUNT MONITOR INCREMENTED BY ONE

/ /*MPY*/V,N,CLCNT/ 1 /V,N,ROCNT $SET COL COUNT=ROW COUNT PRIOR LI CHK

LICLUP g TOP OF COLUMN PORTION OF LINEAR INDEPENDENCE LOOP

/ /*~ADDA/V ,N,CLCNT/V,N,CLCNT/ 1 $ COL COUNT MONITOR INCREMENTED BY ONE

RrROCAI/ /1/V,N,CLCNT/ /V,N,RCF s COSINE TERM TO BE TESTED

/ /*ABS*/V,N,COSRCF/V,N,RCF 3GETS ABSOLUTE VALU OF C0S (ROW.COL) TERM

//*LEx/ /V.,Y,KAPPA/V,N,COSKCF////V ,N,LICHK SLICHK =-1 IF KAPPA < COZRC!

LIVECI. ,SCADJ/CDUM, , ./+7/+1 3 HAVE BUBL VEC TO TRACK.TRIM TRAIL ZER:

CDUM., . ., , ,SCVEC/LIVECJ/+7/+1 3BUBBLE INCREMENTED AWAY FROM HEAD

FALBOOK,LICHK $ CATALOG FAILURE POSITION

MORCLI 3 SKIP AROUND CATALOGING IF TEST WAS SUCCESSFUL

FALBOOK $

/ /*MPY*/V,N,NORFAL/V,N,LICHK/ -1 $ SETS SIGNAL ONLY WHEN A COL FAILS.
HAS OPPOSITE SIGN TO LICHK. POSSIBLE REPEATS ARE 0.K.

/ /0/C,N,ROCNT 3 ROW # OF CANDIDATE WHICH FAILED LI TEST

/ /0/C,N,CLCNT $ COL # OF CANDIDATE WHICH FAILED LI TEST

FALCCLI,LIVECJ/FALCCLJ/ ¢ ACCUM OF COL POS’'NS OF FAILURE3
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SWITCH
LABEL
SWITCH
PARAM
COND
REPT

&
-

LABEL

A~

3
COND
ADD
SWITCH
LABEL
PARAM
PARAM
COND
JUMP
LABEL
PARAML
PARAML
PARAM
$$
PRTFARM
COND
SWITCH
JUMP
LABEL
SWITCH
LABEL
PARTN
PARTN

$$
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FALCCLI,FALCCLJ/ / V,N,LICHK $%

MORCLI 5 CONTINUE LI TE3TING IN THIS ROW EVEN AFTER A COL FAILS
LIVECI,LIVECJ/ / -1 3

/ [*EQ4/V.N,LICDUN/V,N,CLCNT/V,N,2C0L $ LICDUN = -1 IF CLCNT = ZCOL
NUROW,LICDUN ¢ JUMP OUTSIDE OF COL LOOP IF @ LAST COL

LICLUP,9299 5$5355$$555%% END OF COLUMN LOOP

NUROW $

GUDRO,NORFAL $ JUMP 1F NO COLS IN CURRENT ROW HAD A LI FAILURE

FALRRLI, SCVECI/FALRRLJ/ $ ACCUMULATED ROW POSN'S OF FAILED ROWS

FALRRLI,FALRRLJ/ / -1 $ SWLTCH ONLY IF THIS ROW FAILED,ELSE STAYS

GUDRO $

/ /*SUBA/V,N,ROTEST/V,N,2COL/1 $ DECREMENT ZCOL BY ONE FOR ROTES

/ /*EQ*/V ,N,LIRDUN/V,N,ROCNT/V.N,ROTEST ¢ LIRDUN = -1,IF ROCNT=ROTEST

KLENUP,LIRDUN 5

MOROW $ GO AROUND CLEAN UP IF MORE ROWS REMAIN TO BE TESTED

KLENUP 3

FALCCLI/ /*TRAILER*/C.N,6/V,N,FALCDENS 5 DENSITY OF THE COL FAIL VEC

FALRRLI/ /A~TRAILER*/C.N,6/V,N,FALRDENS 5 DENSITY OF THE ROW FAIL VEC

/ [/ *LEA/V,N,DENSLK/V.N,FALCDENS/V.N,FALRDENS 3 IF COL DENS </= ROW DEN:
DENSITY SELECTION PARAMETER IS NEGATIVE

/ /C,N,0/C,N,DENSLK $DB

OTHER .DENSLK $ SWITCH MODPARTN TO THE VECTOR W LWR DENSITY

FALRRLI,MODPARTN/ /-1 $

MODSET $

OTHER $

FALCCLI.MODPARTN/ /-1 §

MODSET $

FMOD,MODPARTN, /PHI, , , /+7/+2 $SURVIVORS OF LI TEST

SCALF, ,MODPARTN/PFVEC,.,/+7/+1 $§ CLUSTER VECTOR FOR MERGING FUND-

AMENTAL MODES WITH HARMONIC3
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MERGE PFVEC, .., .LONGNULL/HEADPF/+7/+1 3$PUT PFVEC AT THE HEAD OF A LONG VEC
PARTN LONGONE, ,HEADPF/SHORTONE,,.,/+7/+1 $ PARTITION LONGONE DOWN B}
PERMANENT

MERGE SHORTONE, ,, , ,LONGNULL/HEDSHORT/+7/+1 $APPEND PERMANENT-SIZE NULL T(
TAIL

ADD HEDSHORT . LONGONE/NEGTAL/(1.0,0.0)/(-1.0,0.0) $PERMANENT-SIZE NEG @ TAII

PROVIDE FOR THE POSSIBILITY OF THE CULLING VECTOR CONTAINING 1'S IN THE END

FOSITIONS. WHICH WOULD DESTROY THE FUNCTION OF THE SHIFTING VECTORS. CONVERT
SCALF TO ALL ONES.

Ur 4r Ur Uy W

MERGE SCALF,....3CADJ/COL3SCAL/+7/+2/+2 5 SETS TRAILER TO RECTANGULAR

TRNEF COLSCAL/SCALFRO $ CONVERT COL TO ROW

MEYAD COLSCAL.SCALFRO, /SQUID/O $SQUARE MTX OF READ D.F. IN PREP FOR DIAG
DIAGONAL SQUID/FULU/*COLUMN*/O;O S3FULU IS5 A CLUSTER OF ALL 1'3. LGTH=FMOD

PARTN FULU, ,MODFARTN/FUNPART,TO3S, ,/+7/+1/+2/+2 3LGTH 1ST=PHI,T0SS=COMF WR?
FMOD

MERGE FUNPART,,,, .FULU/HEDCLUS/+7/+1 $FORM CLUSTER OF FUNPART @ VEC HEAD
MERGE TO038.,,.,.,.FULU/HEDT0SS5/+7/+1/+2 3FORM CLUSTER OF T0SS @ VEC HEAD

ADD FULU,.HEDTO0SS/TALCLUS/(1.0,0.0)/(-1.0,0.0) $ CAP ZEROES @ HEAD Ot
FUNPART

$

COND ADJWRAP,ADJCYC 3

$

CoPY PHI/PHIPI/ 0 3

ADD NEGTAL, /LONGPRMI/(-1.0,0.0) $ TAIL CLUSTER = PERMANENT PRIMARY MODES
PARTN SCVEC, ,HEDCLUS/,HMHED,,/+7/+1 $ HEAD SHIFTER TRIMMED TO LGTH = PHIPIL
PARTN 3CaADJ, ,TALCLUS/,HMTAL,,/+7/+1 $ TAIL SHIFTER TRIMMED TO LGTH = PHIPI
JUMP ADJKUNT s

LABEL ADJWRAP $§

CorY PHI/PHIAIL/ O $

ADD NEGTAL, /LONGARMI,(-1.0.0.0) $ TAIL CLUSTER = PERMANENT ADJOINT MODES
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3
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3
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=

OUTPUT1.
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OUTFUT1,
OUTPUT1
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~
2

~

?

RITZ METHOD FOR TRANSIENT RESPONSE
IN SY3TEMS HAVING UNSYMMETRIC STIFFNESS

SCVEC, ,HEDCLUS/,ADJHED,,/+7/+1 $ SHIFIER TRIMMED TO LGTH = PHIAIL
sCanJ, ,HEDCLUS/,ADJTAL,,/+7/+1 ¢ SHIFTER TRIMMED TO LGTH = PHIAI
HARMONY $

MOROW s

/ /*MPY*/V,N,CLCNT/1/0 $ RESET COLUMN COUNT TO ZERO

SCVECI, ,SCADJ/RDUM, , , /+7/+1 $ TRIM TRAILING ZERO

RDOM, , , , ,SCVEC/SCVECJ/+7/+1 $ BUBBLE INCREMENTED AWAY FROM HEAD
3CVECI,3CVECJ/ / -1 3

SCVECI/LIVECI/ 0 3 COL BUBBLE INDEX ALIGNED WITH ROW TRACKER

LIRLUP,999 s

ADJKUNT 3
!/ /*MPY*/V ,N,ADJCYC/1/-1 3

ADJLUF, 999

Lr

HARMONY 5

reeel /=170 3 CALLS THE DEFAULT LAEEL. NEEDED FOR REWINDS LATER.
PHIPI,PHIAL,SO0LF,SOLA, / /0/0 SMANY CALLS TO BE MADE IN HARMONIC FHAZE
evss/ /~-1/1 3 SETS THE DEFAULT LABEL

HMHED,HMTAL ,ADJHED ,ADJTAL, / /0/1 $

yrrs/ /-1/2 & SETS THE DEFAULT LABEL

LONGNULL ,LONGPRMI,LONGARMI,LONGCONE, / /0/2 &

ALTER 154,154 $ REMOVE OPTIMIZATION LOOP TO PREVENT O'FLOW OF CEITBL

ENDALTER $ END OF ALTER FOR RITZ FUNDAMENTAL MODES
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APPENDIX B

DMAP CODING FOR
PRIMARY AND ADJOINT HARMONICS

AFP DMAP ¢ FOR E¥XECUTION AFTER RITZFUND. INPUTS FROM INPT.INFl.,INP2

BEGIN s

PROGRAMMED FOR 1988 VERSION OF NASTRAN. OUTPUT TO INP3

FILE LONGPRMI=SAVE/LONGARMI=SAVE/PGENI=SAVE/AGENI=SAVE/FULU=5AVE g
FILE PHHED=SAVE/PHTAL=SAVE/AHHED=SAVE/AHHED=SAVE/AHTAL=SAVE 3

PARAM
PARAM
PARAM
FARAM
FARAM

$

LABEL

$

PARAM
COND
COND
COND
COND
LABEL
INPUTTL
INPUTT1
copry
EQUIV
$$
INPUTT1
INPUTT1
INPUTT1

/*MPYA/V,N,FRIMCYC/+1/-1 ¢ CONTROL PARAM FOR PRIMARY 13T HARMONIC
/*ADD*/V ,N ,ADJCYC/+1/ O CONTROL PARAM FOR ADJUNCT 13T HARMONIC
/*ADD*/V ,N,NUPGEN/+1/ 0O CONTROL PARAM FOR PRIMARY HIGHER HARMCNIC3
/*ADD*/V ,N,NUAGEN/+1/ 0 CONTROL PARAM FOR ADJUNCT HIGHER HARMONICS
/*MPY4/V ,N,HARMNO/ 1/ 0 SET THE HARMONIC COUNTER TO ZERO.

~ ~ ~ ~ ~
L U v WV

HMNICGEN $ TOP OF LOOP FOR HARMONIC GENERATION %%%%%%%%%%%%%

/ /*ADD*/V,N,HARMNO/V N, HARMNO/ 1 SINCREMENT THE HARMONIC COUNT BY ONE
PRIMPREP.PRIMCYC 3

ADJFREP ,ADJCYC 3

PHMNPREP ,NUPGEN 3

AHMNFREP ,NUAGEN 3

PRIMFREP 3

le v o . /=10 3

/HLV,.,. /0/0 s READ PHIPI INTO HLV

HLV/PHIPI/ 0 ¢ THIS IS THE ROOT FOR THE 1ST MERGE OF HARMONICS TO PRIM
HLV,TESTER/PRIMCYC s HLV AND TESTER ARE INTERNAL NAMES OF GENERATOR.
LATER ON, EQUIV WILL BE BROKEN AT TOP’'0C LOOP.

/KMMTX,,,, /1/0 ¢ SKIP PASSED ¢ZND DB AND READ SOLP INTO KMMTX

/v v o+ /I-1/1 $

/HEDVECI,TALVECI,.,, /0/1 $READ HMHED INTO HEDVECI & HMTAL INTO TALVECI
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INPUTTI
INPUTT1
COPY
ADD
JUMP
LABEL
INPUTT1
INPUTTL
COPY
EQUIV
INPUTT1
INFUTT1
INFPUTT1
INPUTT1
INPUTT1
COFY
JUMP
LABEL
CoPrPY
EQUIV
INPUTTL
INPUTT1
EQUIV
JUMP
LABEL

COPY
EQUIV
INPUTT1
INPUTT1
EQUIV
LABEL

RITZ METHOD FOR TRANSIENT RESFONSE
IN SYSTEMS HAVING UNSYMMETRIC STIFFNESS

N e VA O

/PGENI,PHTAL,,,/0/1 3READ HMHED INTO PGENI;READ HMTAL INTO PHTAL.
PGENI/PHHED/ 0 $ DUMMY STATEMENT TO FOOL THE COMPILER
HEDVECI,TALVECI/FULU ¢ FLUFF TO HELP FIAT LOCATE THE REAL FULU

HMYBUS $ GO AROUND THE AJOINT PREP

ADJPREP $

/vs,,/-1/0 $ REWIND FROM PREVIOUS PASS THRU LOOP AND POSITION @ 1ST DB
/HLV,,,, /1/0 $SKIP PASSED 1ST DB AND READ PHIAI INTO HLV

HLV/PHIAI/O $THIS IS THE ROOT FOR THE 1ST MERGE OF HARMONICS TO ADJOIN:
HLV,TESTER/ADJCYC ¢ HLV & TESTER ARE INTERNAL NAMES OF CENERATCR
/KMMTX,,,. /1/0 $ SKIP PASSED 3RD DB AND READ SOLA INTO KMMTX

P WA

/HEDVECI,TALVECI,,,/2/1 $READ ADJHED INTO HEDVECI & ADJTAL INTO TALVEC.
/v v v . /=11 8

/AGENI,AHTAL.,./2/1 $SKIP ZDB & READ ADJHED > AGENI:READ ADJTAL »PHTAL.
AGENI/AHHED/ V,N,ADJCYC &

HMYBUS 3

PHMNPREP $

PGENI/HLV/ 0 3

PGENI,TESTER/NUPCEN $ TESTER IS INTERNAL NAME OF GENERATOR

/vsess /-1/0 3 REWIND FROM PREVIOUS PASS THRU LOOP AND POSITION @ 1ST Di
/KMMTX,.,, /2/0 § SKIP PASSED 1ST 2 DB’S AND READ SOLP INTO KMMTX
PHHED, HEDVECI / NUPGEN/PHTAL , TALVECI/NUPGEN $

HMYBUS &
AHMNPREP $

AGENI/HLV/ 0 s

AGENI,TESTER/NUAGEN ¢ TESTER IS INTERNAL NAME OF GENERATOR

/¢vss /-1/0 $ REWIND FROM PREVIQUS PASS THRU LOOP AND POSITION @ 13T Dt
/KMMTX,,.,, /3/0 $§ SKIP PASSED 1ST 3 DB’'S AND READ SOLA INTO KMMTX
AHHED ,HEDVECI/NUAGEN/AHTAL ,TALVECI/NUAGEN $

HMYBUS s
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PARAM
$$
MPYAD
PURGE
COPY
MPYAD
DIAGONAL
MPYAD .
COPY
$35
LABEL
PARAM
3%
MPYAD
MATPRN
COND
DIAGONAL
LABEL
EQUIV
EQUIV
COPY
ADD
COPY
PARAM
PARAM
PARAML
COND
PARAM
LABEL
PARAML
$
LABEL

RITZ MODEZ FOR UNSYMMETRIC MATRICES
DMAP CODING OF THE THEORY

/ /*MPY~/V,N,INITIAL/+1/-1 $ NEWLY GENERATED CANDIDATE COING TO
INITIAL TEST. SET TO -1.

KMMTX ,HLV, /UHC/0/1/0/2 $ CANDIDATES OF THE INERTIAL RESPONSES

KMMTX $

UHC/CLONUHC/ 0 $

CLONUHC,UHC, /UHCSQ/ +1/+1/0/2 $

UHCSQ/SCALH/ADIAGONALA/-0.5 § VECTOR OF EUCLIDEAN LENGTHS.

UHC,SCALH, /PHIHC/0/1/0/2 $ MATRIX OF CANDIDATE FIRST HARMONIC MODES.

PHIHC/CANDIDAT/ 0 $ USE GENERALIZED LOOP NAMES

LIPREP 4§ TOP OF LOOP FOR LINFAR INDEPENDENCE CHECKING %%%%%%%%%%%%%
/ /AMPYA/V,N,RFALNO/1/-1 $ SET DEFAULT TO NEGATIVE.

CANDIDAT,TESTER, /CVST/ +1/+1/0/2 & HARMONICS AGAINST THE GENERATURS.
CvsT.,.,,./ / &

RECTO, INITIAL s SUBSTITUTE A REDUCED FULU IF REMNANT < GENERATOR
CVST/FULU/*COLUMNA/0.0 sALL ONE VEC FOR HARM VS HARM (CVST IS SQUARE)
RECTO 3

HLY,TESTER/MODSPEC 3$BREAK EQUIV W TESTER
PGENI,TESTER/MODSPEC/AGENI,TESTER/MODSPEC $BREAK EQUIV W TESTER
HEDVECI/HMROWI/ 0 $ ROW BUBBLE STARTING FROM HEAD

HMROWI ,HEDVECI/FALHRI/ /(-1.0,9.0) s NULL. SAME LENGTH AS HEDVECI
FALHRI/FALHCI/ 0 & NULL. SAME LENGTH AS HEDVECI

/ /*MPY4/V ,N,CLKNT/ 1/ 0 $ REZET COL COUNT TO 0 BEFORE LI CHECK

/ /*MPY*/V,N,ROKNT/ 1/ 0 $ RESET ROW COUNT TO 0 BEFORE LI CHECK
CVST//*TRAILERA/2/V,N,HROW $ ROWS IN CVST

RECTT, INITIAL ¢ JUMP IF ON RECTANGULAR CYCLE

/ /*SUB%/V,N,HROW/V,N,HROW/1 $ REDUCE ROW TEST VALUE 1 FOR TRIANGLE
RECTT s

CVST//*TRAILER*/1/V,N,HCOL $ COLS IN CVST

HLIRLUP s TOP OF ROW PORTION OF LINEAR INDEPENDENCE CHECK %%%%%%%%%%%
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RITZ MODES FOR UNSYMMETRIC MATRICES
DMAP CODING OF THE THEORY

$

CoPY HEDVECI/HMCOLI/ 0 $ COL BUBBLE STARTING FROM HEAD

PARTN cvsT, ,HMROWI/ ,ROCH, , /+7/+2 %

PARAM / /*ADDA4/V,N,ROKNT/V,N,ROKNT/ 1 &8 ROW COUNT MONITOR INCREMENTED EY ONE
ConD RECT1,INITIAL $

PARAM / /*MPY4/V ,N,CLKNT/1/V,N,ROKNT $ SET COL COUNT=ROW COUNT IF TRIANGLE
LABEL RECT1 s

A

5
LABEL HLICLUP % TOP OF COLUMN PORTION OF LI LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%
5

PARAM / /*ADDA/V,N,CLKNT/V,N,CLKNT/ 1 & INCREMENT THE COLUMN COUNT

3CALAR  ROCH/ /1/V,N,CLKNT/ /V,N,RCH 3 RCH IS DBL PREC FETCH OF COSINE

5% TERM IN ROW POSITION INDEXED BY THE CONSTANT FARAMETER ‘1‘ AND [N THE COL
55 POSITION INDEXED BY THE VARIABLE PARAMETER CLKNT.

PARAMD / /*ABS*/V,N,COSRCH/V,N,RCH $ GETS ABS. VAL. OF COS(ROW,COL) TERM

PARAMD / /*LEXx/ /V,Y¥,KAPPA/V ,N,CO3RCH/ / / /V,N,LIHZK 3

COND CATALOG,LIHZK 5 GO TO CATALOGING IF LIHZK IS NEGATIVE

JUMP MORHCOL $ JUMF TQ MORE COL PROCESSING IF TEST PA3ISED

LABEL CATALOG s

COND RECT?2,INITIAL 3

PARAM / /*MPY*/V ,N,RFALNO/V ,N,LIHZK/ -1 § SETZ SIGNAL ONLY WHEN A COL FAILS.
$3 RFALNO TAKE3S ON OPPOSITE SIGN TO LIHZK. REFEATE ARE OK.

LABEL RECTZ 3

PRTPARM / /0/C,N,ROKNT 5 ROW # OF CANDIDATE TERM WHICH FAILED LI TEST
PRTPARM / /0/C,N,CLKNT § COL # OF CANDIDATE TERM WHICH FAILED LI TEST
COND RECT3, INITIAL s

ADD FALHCT ,HMCOLI/FALHCJ/ $ ACCUMULATION OF COL POS’'NS OF FAIIURES
SWITCH FALHCI,FALHCJ/ /V,N,LIHZK 3

&~
3
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LAEEL
3
PARAM
COND
PARTN
MERGE
SWITCH
REPT

3

LABEL

3

COND
LABEL
ADD
SWITCH
COND
PARAM
LABEL

5

LABEL

-~
5

PARAM
COND
PARAM
FARTN
MERGE
SWITCH

o~
i}

REPT
$

RITZ MODES FOR UNSYMMETRIC MATRICES
DMAP CODING OF THE THEORY

MORHCOL $ CONTINUE LI TESTING IN THIS ROW EVEN AFTER A COL FAILS

/ /*EQ4/V,N,LICDON/V,N,CLKNT/V,N,HCOL $ LICDON = -1 IF CLKNT = HCOL
GNROW,LICDON $ JUMP OUTSIDE OF COL LOOP IF @ LAST COL.

HMCOLI, ,TALVECI/DUMMY,,,/+7/+1 $ TRIM TRAILING ZERO

pumMmy, , , , ,HEDVECI/HMCOLJ/+7/+1 ¢ BUBBLE INCREMENTED AWAY FROM HEAD
HMCOLI ,HMCOLJ/ / -1 8

HLICLUP,999 3 $$58$5$3$65$3$355%8% END OF COLUMN LOOP

GNROW s CONSIDER TESTING ANOTHER ROW

GODRO,RFALNO $ JUMP IF NO COL3 IN CURRENT ROW HAD A LI FAILURE
RECT3 3 CATALOG ROW FAILURE

FALHRI, HMROWI/FALHRJ/ $ ACCUMULATED ROW POS‘NS OF FAILED ROWS
FALHRI,FALHRJ/ / -1 & SWITCH ONLY IF THIS ROW FAILED, ELSE STAYS
RECT4,INITIAL $ BYPASS IF ON RECTANGULAR ROUTE

/ /*MPY*/V,N,RFALNO/V,N,RFALNO/-1 $ RESET TO NEGATIVE.

RECT4 s

GODRO 3

/ /*EQ*%/V ,N,LIRDON/V,N,ROKNT/V ,N,HROW 5 LIRDCN = -1 IF ROKNT = HROW
CLENUP,LIRDON s JUMP OUT OF LI CHECKING IF MIX I3 COMPLETELY EXAMINED
/ /*MPY*/V ,N,CLKNT/1/0 $ RESET COLUMN COUNT TO ZERO

HMROWI, ,TALVECI/DUMMY,,,/+7/+1 $ TRIM TRAILING ZERO

DUMMY,,,, ,HEDVECI/HMROWJ/+7/+1 $BUBBLE INCREMENTED AWAY FROM HEAD
HMROWI ,HMROWJ/ /-1 %

HLIRLUP,999 ¢ END OF ROW PORTION OF LINEAR INDEPENDENCE LOOP%%%%%%%%%:
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LABEL CLENUP &

$

COND RECTS, INITIAL $

PARAML FALHCI/ /ATRAILERA/C,N,6/V,N,DENSFALC % DENSITY OF THE COL FAIL VEC
PARAML FALHRI/ /*TRAILER%/C,N,6/V,N,DENSFALR $ DENSITY OF THE ROW FAIL VEC
PARAM / /*LE*/V,N,SLKDENS /V,N,DENSFALC/V,N,DENSFALR $ IF COL DENS

$3 (/= ROW DENS, THE DENSITY SELECTION PARAMETER [S NEGATIVE.
COND UTHER, SLKDENS $SET MODEPART TO THE VECTOR WITH LWR DENSITY
LABEL RECTS $

COoPY FALHRI/MODEFART/ 0 3

JUMP MODESET s

LABEL UTHER 3

COFPY FALHCI/MODEPART/ 0 §

LABEL MODESET ¢

PARAML MODEPART/ /*TRAILER*#/C,N,6/V,N,MODENSY $ DENSITY OF MODEPART
PRTPARKM / /0/C,N,MODENSY $

PARAM / /*GE%~/V,N,FILLED/V,N,MODENSY/10000 3 FILLED=-1 IF MODEFART IS FULL
COND FOLD,FILLED 3

JUMP FLEDGE &

LABEL FOLD $ SAVE AND GO

PARAM /  /*GT*/V,N,3UMHUM/V,N,HARMNO/2 & SUMHUM=-1 IF 13T HARMS OF P &
PASSED

PRTPARM / /0/C,N,3UMHUM $

COND ORTHOG,3UMHUM ¢ IF 15T HARMS FAIL RESTORE ORIGINAL NAME3 TO OUTFUT

neyT: /, , , , /-1/0 8

INPUTT1 /PHIPI,PHIAI,,,/0/0 $ FUNDS W/0O HARMONICS

INneoTT, /, , , , /-1/1 3

INPUTT1 /HEADPHI,TAILPHI,,,/0/1 $TRACKERS W/0 HMNIC.HMHED=HEADPHI.HMTAL=TAILPH.
JUMP NOBIZNEZ $ COPY OUT AS THEY CAME IN
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LABEL FLEDGE $

PARTN CANDIDAT,MODEPART, /REMNANT, ,,/+7/+2 $SURVIVORS OF LI TEST

55 PROVIDE FOR THE POSSIBILITY OF THE CULLING VECTOR CONTAINING 1’S IN THE

55 ENDS, WHICH WOULD DESTROY THE SHIFTING VECTORS. CONVERT SCALH TO ALL ONES.
COND RECT6, INITIAL $

JUMP TRIA6 $

LABEL RECT6 $

MERGE.  SCALH,,,,,TALVECI/COLSCAL/+7/+2/+2 $ SETS TRAILER TO RECTANGULAR

TRNSP COLSCAL/SCALPRO ¢ CONVERT COL TO ROW

MPYAD COLSCAL,SCALPRO, /SQUID/0 $ SQAURE MTX OF REAL S.P. IN PREP FOR DIAG
DIAGONAL SQUID/FULU/ACOLUMNX/0.0 $FULU IS A CLUSTER OF ALL ONES LGTH=CANDIDAT
LABEL TRIAG $

PARTN FULU, ,MODEPART/HMYPART,T0SS,,/7/1/2/2 $1'S.LGTH 1ST =REMNANT.TO0SS=COMFI
MERGE HMYPART, , ,, ,FULU/HEDCLUS/+7/+1/2 $FORM CLUSTER OF HMYFPART @ VEC HEAD
PARTN HEDVECI, ,HEDCLUS/ ,HEDVECJ,,/7/1/2/2 $NU SHIFTER HAS LGTH=REMNANT

MERGE TOSS,,,,,FULU/HEDTOSS/7/1/2 $FORM CLUSTER OF TO3S @ VEC HEAD

ADD FULU,HEDTO0SS/TALCLUS/(1.0,0.0)/(-1.0,0.0) 3CAP ZEROES 2 HEAD OF HMYPAR®
PARTN TALVECI, ,TALCLUS/,TALVECJ,,/7/1/2/2 $NU 3HIFTER HAS LGTH=REMNANT
SWITCH HEDVECI,HEDVECI/ / -1 $

SWITCH TALVECI,TALVECJ,/ / -1 §

PRTFARM / /0/C,N,INITIAL §
COND TEST?2,INITIAL 3 If INITIAL [3 NEGATIVE GO TO Z2nd LI TEST
JUMF DEPOT $READY FOR MERGING AND GENERATING (1.ADJ 2.NU PHMNY 3.NU AHMNY)

LABEL TEST2 §

3Test whether one or less columns of REMNANT are left. SET PARAMETER IF SO.
PARAML REMNANT/ /*TRAILERA/1/V,N,REMCOL $

PARAM / /*LE~/V,N,SALVAGE/V,N,REMCOL/1 s

COND DEPOT,SALVAGE §

SWITCH REMNANT, CANDIDAT/ /V,N,INITIAL s

CoPY CANDIDAT/TESTER/V,N,INITIAL $

PARAM / /*MPY%/V,N,INITIAL/V,N,INITIAL/ -1 $

REPT LIPREP,1 $ MAKE A 2ND PASS FOR THE LI TESTS ON HARMONICS ALONE.
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$

LABEL DEPOT $§ STAGING POINT.WRAPUP.MERGE.HARMON1C GENERATION.
COND QUIV1,PRIMCYC §

JUMP CHKADJ s

LABEL QUIV1 s

INPOUTTY /, , , , /=112 8

INPUTT1 /LONGPRMI,,,, /1/2 $SKIP 1 DB & READ IN LONGPRMI
EQUIV LONGPRMI ,LONGRMI/PRIMCYC/PHIPI,PHII/PRIMCYC 3
JUMP MERGBUS s

LABEL CHKADJ 3

COND QUIVZ,ADJCYIC 3
JUMP CHKPGEN s

LABEL QUIVZ 3

NeuTT! /4, , ., /-l72 3

INFUTT1 /LONGARMI,,,, /2/2 $S5KIP 2 DB & READ IN LONGARMI
EQUIV LONGARMI , LONGRMI /ADJCYC/PHIAI ,PHII/ADJCYC 3

JUMP MERGBUS $

LABEL CHKPGEN 3

COND QUIV3,NUPGEN 3

JUMP CHKAGEN $

LABEL QUIV3 3

EQUIV LONGPRMI , LONGRMI /NUPGEN/PHIPI ,PHII/NUPGEN 3

JUMP MERGBUS 3
LABEL CHKAGEN $
COND QUIV4,NUAGEN $
JUMP MERGBUS $

LAEBEL QUIV4 s

EQUIV LONGARMI ,LONGRMI/NUAGEN/PHIAI ,PHII/NUAGEN $
LABEL MERGBUS 8

eyt /, , , , /-1/2 3

INPUTT1 /LONGNULL,,,,/0/2 $READ IN LONGNULL

INPUTTL /LONGONE,,,,/2/2 5 SKIP 2 DB & READ IN LONGONE
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RITZ MODES FOR UNSYMMETRIC MATRICES
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HMYPART,,,,,LONGNULL/LHRMHED/+7/+1 $ INCREMENT = LENGTH OF NEW HARMONIC

LONGONE, ,LHRMHED/DUMMY,,,/+7/+1 $ FARTITION LONGONE DOWN BY HARMONIC

DUMMY,,,,,LONGNULL/HEDSHRTH/+7/+1 $APPEND HARMONIC-SIZE NULL TO TAIL

LONGONE ,HEDSHRTH/LHRMTAL/ /(-1.0,0.0) $HARMONIC-SIZE CLUSTER @ TAIL

LONGRMI, ,LHRMHED/DUMMY,,,/+7/+1 $TRIM A HARMONIC INCREMENT OF ZERCES
FROM THE HEAD OF LONGRMI.

DUMMY, ,,,,LHRMTAL/BBLRM/+7/+1 $PLUG A HARMONIC INCREMENT OF ZEROES
ONTO THE TAIL OF LONGRMI.

BBLRM,LHRMTAL/LONGRMJ/ & CLUSTER=NUHARM INC + ACCEPTED

LHRMTAL, ,LONGRMJ/ ,TRIMRM,,/+7/+1 $ THI3 IS THE PARTITIONING VECTOR
NEEDED FOR COMBINING THE HARMONIC TO THE MATRIX OF ACCEPTED MODES

$Test whether one or less columns of REMNANT are left. SET PARAMETER IF SO.

3

PARAML
MERGE
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
SWITCH
$

REMNANT/ /~TRAILER~/1/V,N,REMCOL 3
PHII, ,REMNANT,,TRIMRM,/PHIJ/+7/+2 $ MERGED!!
LONGRMJ , LONGPRMI/ /V,N,PRIMCYC 3
LONGRMJ ,LONGFPRMI/ /V,N,NUFGEN §
LONGRMJ, LONGARMI/ /V,N,ADJCYC 3
LONGRMJ, LONGARMI/ /V,N,NUAGEN $
PHIJ,PHIPI/ /V,N,FRIMCYC 3
PHIJ,PHIPL/ /V,N,NUPGEN s

FHIJ ,FHIAI/ /V,N,ADJCYC 3

PHIJ ,PHIAI/ /V,N,NUAGEN 3

HEDVECI ,FHHED/ /V,N,PRIMCYC 3
HEDVECI,AHHED/ /V,N,ADJCYC $
HEDVECI,PHHED/ /V,N,NUFGEN $
HEDVECI ,AHHED/ /V,N,NUAGEN $
TALVECI,PHTAL/ /V,N,PRIMCYC $
TALVECI,AHTAL/ /V,N,ADJCYC $
TALVECI,PHTAL/ /V,N,NUPGEN $
TALVECI ,AHTAL/ /V,N,NUAGEN $
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COND

$

COND
JUMP
LABEL
SWITCH
PARAM
PARAM
JUMP
LABEL
COND
JUMP
LABEL
SWITCH
FARAM
FARAM
JUMP
LABEL
COND
JUMP
LABEL
SWITCH
PARAM
PARAM
JUMP
LABEL
SWITCH
PARAM
PARAM
LABEL

-
?

RITZ MODE3 FOR UNSYMMETRIC MATRICES
DMAP CODING OF THE THEORY

/1 *EQ*/V ,N,HARMDONE/C,Y,MODSPEC/V,N,HARMNO s IF # HARM=MODSPEC =>DONE
ORTHOG,HARMDONE $JUMP OUTSIDE HARMONIC LOOP IF HARMONICS ARE DCNE

PRIMOUT,PRIMCYC $

ADJHRMNY ¢

PRIMOUT s

REMNANT ,PGENI/ /V,N,PRIMCYC $

/ /*MPYA/V ,N,PRIMCYC/V,N,PRIMCYC/ -1 $ RESET PRIMCYC TO POSITIVE
//*MPY*/V ,N,ADJCYC/+1/-1 $ ENABLE THE LOOP FOR THE ADJOINT 15T HARM
HLOOPEND 3

ADJHRMNY 3

ADJOUT ,ADJCIC s

PHMNZ 3

ADJOUT 3

REMNANT ,AGENI/ /V,.N,ADJCYC 5-------

//*MPY*/V ,N,ADJCYC/V ,N,ADJCYC/ -1 s REZET ADJCYC TO POIITIVE

/1 *MPY*/V ,N,NUPGEN/+L/-1 & ENABLE THE LOOP FOR THE PRIM HIGHER HARM
HLOOFEND s

PHMNZ s

PHMNOUT ,NUFGEN 3

AHMNZ

PHMNOUT $

REMNANT,PGENI/ /V,N,NUPCEN §---~----

/ /*MPY*/V ,N,NUPGEN/V,N ,NUPGEN/ ~1 $ RESET NUPGEN TO POSITIVE
//*MPY*/V ,N,NUAGEN/+1/-1 § ENABLE THE LOOP FOR THE ADJ HIGHER HARM
HLOOPEND 3

AHMNZ $

REMNANT ,AGENI/ /V,N,NUAGEN $-------

/ /1 *MPY*/V ,N,NUAGEN/V ,N,NUAGEN/ -1 $ RESET NUAGEN TO FOSITIVE
//*MPY*/V ,N,NUPGEN/+1/-1 $ ENABLE THE LOOP FOR THE PRIM HIGHER HARM
HLOOPEND s
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38
COND
JUMP
LABEL
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LABEL
PURGE
REPT

$
LABEL
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2

MERGE
PARTN
MERGE
ADD
PARTN
MERGE
PARTN
PARTN
LABEL
OUTPUT1,
OUTPUT1
LABEL
FRTFARM
LABEL
END &

RITZ MODES FOR UNSYMMETRIC MATRICES
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/ /*LE*/V,N,TESTOVER/V,N,REMCOL/1 $ TESTOVER =-1 [F REMCOL (</=) 1
THIS IS THE EXIT 1IN CASE FEWER HARMONICS PASS
THE LI TEST THAN ARE SPECIFIED BY MODSPEC

ALTCHK,TESTOVER $ EXIT WHEN HARMONICS ARE EXHAUSTED PRIOR TO MODSPEC

USUAL §

ALTCHK $

USUAL ,ADJCYC $ ADJOINT GETS A CHANCE TO GENERATE A SINGLE

ORTHOG ,NUPGEN & PREVENT ANOTHER HARMONIC TO BE GENERATED FROM A SINGLE

USUAL,NUAGEN ¢ ADJHRM GETS A CHANCE TO GENERATE A SINGLE

ORTHOG $

USUAL 3
KMMTX/MODSPEC $
HMNICGEN, 999 3 END OF HARMONIC GENERATOR LOOP %%%%%%%%%%%%%%%%%%%%%%%:

ORTHOG 3

PHHED, , , , .LONGNULL/LONGHEDL/+7/+1 $*+~START OF HEADPHI CONSTRUCTION
LONGONE, ,LONGHEDl/DUMMY, ., , /+7/+1 3 LUMP TO MERGCE ON HEAD

puMMmy, , , , ,LONGNULL/MISSTAIL/+7/+1 $ ONE MISSING FROM TAIL
LONGONE,MISSTAIL/LONGTALL/ /(-1.0,0.0) $**START OF TAILPHI CONSTRUCTIO
LONGONE, ,LONGPRMI/ ,DUMMY, ./+7/+1 3ALL ONES OF LGTH=ACCEPTED VECTORS
pUMMY, . ., , ,LONGNULL/HEADER/+7/+1 sHEAD CLUSTER OBVERSE OF LONGPRMI
LONGHEDl, ,HEADER/ ,HEADPHI, , /+7/+1 $ SAVE FOR DELIVERY TO ORTHOG
LONGTALl, ,LONGPRMIs ,TAILPHI, , /+7/+1 $ SAVE FOR DELIVERY TO ORTHOG
NOBIZNEZ $ GET OUT WITH OUTPUT SAME AS INPUT

.»9s»/ /-1/3 § SET DEFAULT LABEL

PHIPI,HEADPHI,TAILPHI ,PHIAI. / /0/3 §

PRINTOUT $

//0/C,N,HARMNO $

FINIS s

FINISH OF DMAP PROGRAM FOR RITZ HARMONICS
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AFPENDIX C
RITZRTHG.DMP
SELF AND DUO ORTHOGONALIZATION

NASTRAN MAXFILES = 60,FILES = (INP3,INP4)

APP DMAP $ PROGRAMMED FOR 1988 NASTRAN. OUTPUT TO PUNCH FILE.

$$ EXECUTES AFTER BOTH RITZFUND AND RITZHARM TO ORTHOGONALIZE RITZ MODES
BEGIN $ $3$ORTHOG.DMP

INPUTT1 /v o+ . /-1/3 3

INPUTTL /PHIFPI ,HEADPHI ,TAILPHI,PHIAI, /0/3 $

PARTN PHIPI,HEADPHI, / , ,PHIl, /+7/+2 §
COFPY PHI1/Z2ETAl/ 0 3

PARTN HEADPHI, ,TAILLFHI/DUMMY, , , /+7/+1 3
MERGE DUMMY, . . ., HEADPHI/BBLHI/+7/+1 &
PARTN PHIPI,.BBLHI, / , ,PHIZ, /+7/+42 3
MPYAD PHI1,PHIZ, /NUM/+1/-1 5.

COPY PHI1/CLONFHI1l/ O 3

MPYAD CLONPHIL1,PHILl, /DEN/+1/+1 3

SCALAR NUM/ /L1/1/ / /V,N,SPXNUM $§
SCALAR DEN/ /Y717 7 /V,N,3PXDEN $
PARAMR / /*DIVC*/ / / /V.N,A11/V,N,SPXNUM/V,N,3PXDEN $

ADD PHI1 ,FHIZ2/ZETA2/V,N,All & SINGLE PREC.WON'T TAKE DEL PREC!!!
PARTN TAILPHI, ,HEADFHI/DUMMD, ., ,/+7/+1 $

MERGE DUMMD, ,,, ,TAILPHI/BBLTI/+7/+1 $

ADD BBLTI,TAILPHI/PTALCLUI/ §

PARTN TAILPHI, ,PTALCLUI/,BUILDI, , /+7/+1 §

MERGE ZETAl, ,ZETA2, ,BUILDI, /2ZETAIL/+7/+42 &

MPYAD ZETAI ,PHIPI, /COEFI/+1l/+l1 3

ADD BBLHI ,HEADPHI/PHEDCLUI/ §

PARAM / /*ADD*/V ,N,ROWCOW/2/0 3

PARAML PHIPI/ /*TRAILER*/1/V,N,PCOL 3
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LABEL ORTHLUP s TOP OF SELF ORTHOGONALIZATION LOOP
PARAM / /*ADD*/V ,N,ROWNCOW/V ,N,ROWCOW/1 $

PARTN COEFI,PHEDCLUI, / , ,CAI, /+7/+2 §.

PARTN BBLHI, ,TAILFHI/DUMVEC, , ., /+7/+1 s

MERGE DUMVEC, , , , ,HEADPHI/BBLHJ/ +7/+1 g

PARTN COEFI.BBLHJ, / , ,CFI, /+7/+42 8

SOLVE CAI,CFI/AIN/-1/-1/2 §

PARTN BBLTI, ,HEADPHI/DMY, , , /+7/+1 3

MERGE pMy, , , ., .TAILPHI/BBLTJ/ +7/+1 §

ADD PTALCLUI,BBLTJ/PTALCLUJ/ §

PARTN TAILPHI, ,FTALCLUJ/ ,BUILDJ,.,/+7/+1 &

PARTN PTALCLUJ, .TAILPHI/ ,UNIT, , /+7/+1/ /2 $ UNIT IS RECTANGULAR 3.P.
MERGE AIN,ONIT, , , ,BUILDJ/AJN/+7/+2 s

ADD PHEDCLUI,BEBLHJ/PHEDCLUJ/ $

PARTN PHIPI,PHEDCLUJ, / , ,PHIZ, /+7/+2 §

MPYAD PHIZ,AJN, /ZETAX/03

MERGE ZETAI, ,2ETAX, ,BUILDJ, /ZETAJ/+7/+2 3

MPYAD ZETAJ ,PHIPI, /COEFJ/+1/+1 §

SWITCH ZETAI,ZETAJ/ / -1 §
SWITCH BBLHI,BBLHJ/ / -1 &
SWITCH PHEDCLUI ,PHEDCLUJ/ / -1 §
SWITCH BBLTI,BBLTJ/ / -1 3
SWITCH PTALCLUI,PTALCLUJ/ / -1 §
SWITCH BUILDI,BUILDJ/ / -1 3
SWITCH COEFI.COEFJ/ / -1 §

PARAM / /*EQ*/V,N,SELFDUN/V,N,RONCOW/V,N,PCOL $§
COND DUALORTH,SELFDUN $

REPT ORTHLUP, 999 3

LABEL DUALORTH s

CoPY ZETAI/CLONZETA/ 0 3

MPYAD CLONZETA,ZETAI, /2SQ/+1/+1 8

MATPRN 23Q..,../1 8
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$ START OF DUAL ORHTOGONALIZATION OF ADJOINT MODES.

$
INFUTTL

INPUTT1
MPYAD
MPYAD
DIAGONAL
SOLVE
MPYAD
MPYAD
MPYAD
MPYAD
MPYAD
MATPRN
OUTPUT3

Ly v o /7174

/MLL,KLL,,,/0/4 §

ZETAI ,MLL, /ZEM/+1 3

ZEM,PHIAI, /KOEF/0 $
MLL/UNITY/ASQUARE#/0.0 $

KCEF ,UNITY/BETA/-1/+1/+2/42 §
PHIAI ,BETA, /OMEGA/0 $

OMEGA ,MLL, /MEGM/+1/+1 $
MEGM,ZETAI, /GENMASS/0 3
OMEGA.KLL, /MEGK/+l1/+1 3
MEGK,ZETAI, /GENSTIF/0 $

GENMASS ,2ETAI,OMEGA,GENSTIF.// §
ZETAI ,OMEGA,CENMASS ,GENSTIF.//0/C,Y ,N1=222/
C,Y,N2=MEG/C,¥Y ,N2=MMM/C, Y ,N4=KKK 3

END $ FINISH OF ORTHOGONALIZATION OF RITZ VECTORS
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APPENDIX D

DEMONSTRATION PROBLEM FOR UNSYMMETRIC RITZ
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APPENDIX E

GENMASS KAFPA = .007

.00000E+00 -1.57700E-21 -1.75392E-21 -4.22772E-26
.33943E-25 1.00000E+00 5.52286E-26 1.84410E-23
.86876E-22 -1.76725E-24 1.00000E+00 -1.41962E-23
6.08346E-27 -4.10067E-23 6.50197E-24 1.00000E+00

L RN

GENMASS KAPPA = 0.95

1.00000E+00 -3.41619E-17 -2.08085E-17 -7.77767E-17 -3.55682E-15
6.80886E-17 7.19268E-16 -3.59782E-16 1.85463E-15
-2.09800E-17 1.00000E+00 -2.66490E-16 ©5.34076E-15 4.56150E-17
-1.0807 2732E-14 1.36521E-14 -1.98969E-13
~-7.27244E-16 3.14776E-15 1.00000E+00 1.58474E-15 6.56536E-16
-7.71337E-15 -3.17466E-14 1.96339E-14 -4.29536E-14
-6.40719E-18 -1.66050E-15 5.80912E-17 1.00000E+00 4.28422E-19
1.45089E-15 7.28284E-15 -5.87202E-15 1.86094E-14
- -1.15957E-15 1.05575E-16 4.21965E-17 1.36209E-16 1.00000E+00
-2.06182E-16 -1.70354E-15 4.34321E-16 -2.34621E-15
-4.61736E-17 4.20176E-15 -3.42951E-16 1.05352E-14 5.74604E-17
1.00000E+00 2.34472E-14 1.11612E-14 -1.95622E-13
-1.94247E-18 -4.76531E-16 3.61424E-17 -7.44025E-16 4.46676E-18
1.22754E-15 1.00000E+00 -1.59921E-15 2.45933E-14
2.42787E-18 8.22934E-16 -2.48630E-17 1.54B08E-15 -1.46353E-17
-6.75527E-16 -7.19174E-16 1.00000E+00 -1.18324E-14
1.14403E-18 -1.60473E-17 -1.99198E-18 6.85738BE-18 -1.30097E-18
3.33071E-17 -6.84577E-18 -9.50914E-17 1.00000E+00
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GENSTIF KAPPA = .007

1.04682E+01 6.15654E-04 -9..26258E-04 -2.98838E-10
-3.08635E-04 4.61758E-02 .74302E-08 5.87860E-08
-8.90200E-04 -5.23407E-08 1.36253E-02 -3.94594E-08
-8.76229E-10 2.54442E-05 -1.91582E-05 Z.57602E+01

rJ

GENSTIF KAFPA = 0.95

3.39196E+02 -6.69263E-01 -2.44002E-01 -9.04235E-01 -3.12387E+02
1.17373E+00 2.61238E+01 -1.37057E+00 2.05697E+01l
-1.08090E-02 3.15758E-01 -5.48427E-03 1.31833E-01 1.07321E-02
-1.70708E-01 " 8.53201E-01 6.03132E-01 -2.68652E+00 |
-3.09520E-02 1.61339E-02 2.06822E-02 2.84852E-02 2.85713E-02
~-3.69205E-02 -2.37364E-01 1.00253E-01 -6.03664E-01
-8.47928E-01 1.11503E+02 -8.23610E+00 6.49374E+02 1.13001E+00
-8.02691E+02 3.80773E+02 3.22937E+02 -4.57428E+03
-3.07444E+02 6.23311E-01 2.25336E-01 8.38877E-01 2.89818E+02
-1.08889E+00 -2.42260E+01 1.27283E+00 -1.90819E+01
7.98571E-01 -1.04804E+02 7.74130E+00 -5.92276E+02 -1.12001E+00
7.54470E+402 -3.57896E+02 -3.0353SE+02 4.29948E+03
| 1.98390E-01 2.15040E-02 -8.83532E-03 2.23315E-02 -1.85797E-01
| -2.80937E-02 3.86155E-01 -1.58374E-02 6.00169E-02
6.36402E-02 1.95278E+00 -1.21436E-01 4.85570E+00 -5.51377E-02
-6.20209E+00 6.10810E+00 5.60222E+00 -7.46195E+01
1.76325E-02 -2.24893E+00 1.66211E-01 -5.93498E+00 -2.44872E-02
7.57854E+00 -7.62053E+00 -6.48352E+00 9.22406E+01
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